Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 593(7858): 233-237, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33981052

RESUMO

Atmospheric acidity is increasingly determined by carbon dioxide and organic acids1-3. Among the latter, formic acid facilitates the nucleation of cloud droplets4 and contributes to the acidity of clouds and rainwater1,5. At present, chemistry-climate models greatly underestimate the atmospheric burden of formic acid, because key processes related to its sources and sinks remain poorly understood2,6-9. Here we present atmospheric chamber experiments that show that formaldehyde is efficiently converted to gaseous formic acid via a multiphase pathway that involves its hydrated form, methanediol. In warm cloud droplets, methanediol undergoes fast outgassing but slow dehydration. Using a chemistry-climate model, we estimate that the gas-phase oxidation of methanediol produces up to four times more formic acid than all other known chemical sources combined. Our findings reconcile model predictions and measurements of formic acid abundance. The additional formic acid burden increases atmospheric acidity by reducing the pH of clouds and rainwater by up to 0.3. The diol mechanism presented here probably applies to other aldehydes and may help to explain the high atmospheric levels of other organic acids that affect aerosol growth and cloud evolution.

2.
Sci Adv ; 6(20): eaaz8867, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32426501

RESUMO

Discovering and optimizing commercially viable materials for clean energy applications typically takes more than a decade. Self-driving laboratories that iteratively design, execute, and learn from materials science experiments in a fully autonomous loop present an opportunity to accelerate this research process. We report here a modular robotic platform driven by a model-based optimization algorithm capable of autonomously optimizing the optical and electronic properties of thin-film materials by modifying the film composition and processing conditions. We demonstrate the power of this platform by using it to maximize the hole mobility of organic hole transport materials commonly used in perovskite solar cells and consumer electronics. This demonstration highlights the possibilities of using autonomous laboratories to discover organic and inorganic materials relevant to materials sciences and clean energy technologies.

3.
J Geophys Res Atmos ; 125(22): e2020JD032794, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33777605

RESUMO

TanSat is the 1st Chinese carbon dioxide (CO2) measurement satellite, launched in 2016. In this study, the University of Leicester Full Physics (UoL-FP) algorithm is implemented for TanSat nadir mode XCO2 retrievals. We develop a spectrum correction method to reduce the retrieval errors by the online fitting of an 8th order Fourier series. The spectrum-correction model and its a priori parameters are developed by analyzing the solar calibration measurement. This correction provides a significant improvement to the O2 A band retrieval. Accordingly, we extend the previous TanSat single CO2 weak band retrieval to a combined O2 A and CO2 weak band retrieval. A Genetic Algorithm (GA) has been applied to determine the threshold values of post-screening filters. In total, 18.3% of the retrieved data is identified as high quality compared to the original measurements. The same quality control parameters have been used in a footprint independent multiple linear regression bias correction due to the strong correlation with the XCO2 retrieval error. Twenty sites of the Total Column Carbon Observing Network (TCCON) have been selected to validate our new approach for the TanSat XCO2 retrieval. We show that our new approach produces a significant improvement on the XCO2 retrieval accuracy and precision when compared to TCCON with an average bias and RMSE of -0.08 ppm and 1.47 ppm, respectively. The methods used in this study can help to improve the XCO2 retrieval from TanSat and subsequently the Level-2 data production, and hence will be applied in the TanSat operational XCO2 processing.

4.
Nature ; 515(7525): 104-7, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25373680

RESUMO

The abundance of chlorine in the Earth's atmosphere increased considerably during the 1970s to 1990s, following large emissions of anthropogenic long-lived chlorine-containing source gases, notably the chlorofluorocarbons. The chemical inertness of chlorofluorocarbons allows their transport and mixing throughout the troposphere on a global scale, before they reach the stratosphere where they release chlorine atoms that cause ozone depletion. The large ozone loss over Antarctica was the key observation that stimulated the definition and signing in 1987 of the Montreal Protocol, an international treaty establishing a schedule to reduce the production of the major chlorine- and bromine-containing halocarbons. Owing to its implementation, the near-surface total chlorine concentration showed a maximum in 1993, followed by a decrease of half a per cent to one per cent per year, in line with expectations. Remote-sensing data have revealed a peak in stratospheric chlorine after 1996, then a decrease of close to one per cent per year, in agreement with the surface observations of the chlorine source gases and model calculations. Here we present ground-based and satellite data that show a recent and significant increase, at the 2σ level, in hydrogen chloride (HCl), the main stratospheric chlorine reservoir, starting around 2007 in the lower stratosphere of the Northern Hemisphere, in contrast with the ongoing monotonic decrease of near-surface source gases. Using model simulations, we attribute this trend anomaly to a slowdown in the Northern Hemisphere atmospheric circulation, occurring over several consecutive years, transporting more aged air to the lower stratosphere, and characterized by a larger relative conversion of source gases to HCl. This short-term dynamical variability will also affect other stratospheric tracers and needs to be accounted for when studying the evolution of the stratospheric ozone layer.

5.
Appl Opt ; 40(28): 5078-87, 2001 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18364788

RESUMO

Thermal self-emission contributes to interferograms measured with Fourier-transform infrared spectrometers. If the beam-splitter is almost transparent, the complex spectral amplitude that is due to the detector port emission is opposite that of the input port, whereas the amplitude that is due to the beam-splitter emission is in quadrature. The situation of an absorbing beam splitter is examined here. The volume beam-splitter emission is modeled by a superposition of dipole sources spread in an absorbing film. Angular polarization correlations are taken into account. It is found that the phase relations between the complex spectral amplitudes are affected. Numerical data are given for experimental conditions adapted to those of the airborne limb sounder MIPAS-FT.

6.
Appl Opt ; 38(15): 3129-33, 1999 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-18319900

RESUMO

A new method for the determination of ray paths as well as resulting path segments and partial gas columns within a layered atmosphere is presented. Any singularity at the tangent point is avoided. No use is made of the gross spherical symmetry of the Earth's atmosphere. Using this approach we examine the impact of the Earth's oblate shape and horizontal atmospheric inhomogeneities on infrared limb spectra.

7.
Appl Opt ; 38(15): 3417-22, 1999 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-18319940

RESUMO

The instrumental line shape (ILS) of two commercial high-resolution Fourier transform IR spectrometers has been analysed with gas cell measurements and a new ILS retrieval software LINEFIT. The instruments are used for atmospheric remote sounding, and the compatibility of the ILS deduced from laboratory gas cell measurements with the ILS in the atmospheric measurement itself is examined.

8.
Appl Opt ; 36(31): 8168-72, 1997 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18264352

RESUMO

Since winter 1994/1995 the Moon has been used in addition to the Sun as an IR source of radiation to measure atmospheric absorption spectra with a Bruker IR Fourier transform spectrometer IFS 120M located near Kiruna, Sweden. A two-point radiometric calibration method with blackbody references was applied to lunar spectra in the long-wave detector channel to improve the accuracy of evaluation of the column amounts of different atmospheric trace gases. A new liquid-nitrogen-cooled high-emissivity blackbody without an entrance window is described that is used for this calibration method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...